home *** CD-ROM | disk | FTP | other *** search
/ Internet Info 1994 March / Internet Info CD-ROM (Walnut Creek) (March 1994).iso / answers / comp / scsi-faq / part2 < prev    next >
Text File  |  1994-04-04  |  50KB  |  1,120 lines

  1. Newsgroups: comp.periphs.scsi,comp.answers,news.answers
  2. Path: bloom-beacon.mit.edu!hookup!news.kei.com!wang!news
  3. From: garyf@wiis.wang.com (Gary Field)
  4. Subject: comp.periphs.scsi FAQ part 2 of 2
  5. Expires: Sun, 1 May 1994 05:00:03 GMT
  6. Reply-To: garyf@wiis.wang.com (Gary Field)
  7. Organization: Wang Labs, Lowell MA, USA
  8. Date: Mon, 4 Apr 1994 15:21:30 GMT
  9. Approved: news-answers-request@MIT.Edu
  10. Message-ID: <Cnqqny.Mp7@wang.com>
  11. Followup-To: comp.periphs.scsi
  12. Summary: This posting contains a list of Frequently Asked
  13.              Questions (and their answers) about SCSI.  It
  14.              should be read by anyone who wishes to post to the
  15.              comp.periphs.scsi newsgroup.
  16. Sender: news@wang.com
  17. Nntp-Posting-Host: gfield.wiis.wang.com
  18. Lines: 1099
  19. Xref: bloom-beacon.mit.edu comp.periphs.scsi:13522 comp.answers:4769 news.answers:17656
  20.  
  21. Archive-name: scsi-faq/part2
  22.  
  23.                   SCSI FAQ:
  24.        Frequently Asked Questions for comp.periphs.scsi
  25.  
  26.                   VOLUME II
  27.  
  28. Volume II Table of Contents:
  29.     What is the difference between SCSI-1 and SCSI-2?
  30.     Is SYNCHRONOUS faster than ASYNCHRONOUS?
  31.     Is the 53C90 Faster than spec?
  32.     What are the jumpers on my Conner drive?
  33.     What are the jumpers for my Wangtek 5150 drive?
  34.     What is CAM?
  35.     What is FPT (Termination)?
  36.     What is Active Termination?
  37.     Why Is Active Termination Better?
  38.     Why is SCSI more expensive than IDE?
  39.     What is Plug and Play SCSI?
  40.     Where can I get drivers (ASPI and other) for the WD7000 FASST2 host adapter?
  41.  
  42. ====
  43. QUESTION: What is the difference between SCSI-1 and SCSI-2?
  44. ANSWER From Dal Allen:
  45. ====
  46.  
  47.                           SCSI-1_versus_SCSI-2
  48.  
  49. In 1985, when the first SCSI standard was being finalized as an American
  50. National Standard, the X3T9.2 Task Group was approached by a group of
  51. manufacturers.  The group wanted to increase the mandatory requirements of
  52. SCSI and to define further features for direct-access devices.  Rather than
  53. delay the SCSI standard, X3T9.2 formed an ad hoc group to develop a working
  54. paper that was eventually called the Common Command Set (CCS).  Many products
  55. were designed to this working paper.
  56.  
  57. In parallel with the development of the CCS working paper, X3T9.2 sought
  58. permission to begin working on an enhanced SCSI standard, to be called SCSI-2.
  59. SCSI-2 would include the results of the CCS working paper, caching commands,
  60. performance enhancement features, and whatever else X3T9.2 deemed worthwhile.
  61. While SCSI-2 was to go beyond the original SCSI standard (now referred to as
  62. SCSI-1), it was to retain a high degree of compatibility with SCSI-1 devices.
  63.  
  64. How is SCSI-2 different from SCSI-1?
  65.  
  66. 1.  Several options were removed from SCSI-1:
  67.  
  68.    a.  Single initiator option was removed.
  69.    b.  Non-arbitrating Systems option was removed.
  70.    c.  Non-extended sense data option was removed.
  71.    d.  Reservation queuing option was removed.
  72.    e.  The read-only device command set was replaced by the CD-ROM command
  73.        set.
  74.    f.  The alternative 1 shielded connector was dropped.
  75.  
  76.  
  77. 2.  There are several new low-level requirements in SCSI-2:
  78.  
  79.    a.  Parity must be implemented.
  80.    b.  Initiators must provide TERMPWR -- Targets may provide TERMPWR.
  81.    c.  The arbitration delay was extended to 2.4 us from 2.2 us.
  82.    d.  Message support is now required.
  83.  
  84.  
  85. 3.  Many options significantly enhancing SCSI were added:
  86.  
  87.    a.  Wide SCSI (up to 32 bits wide using a second cable)
  88.    b.  Fast SCSI (synchronous data transfers of up to 10 Mega-transfers per
  89.        second -- up to 40 MegaBytes per second when combined with wide SCSI)
  90.    c.  Command queuing (up to 256 commands per initiator on each logical unit)
  91.    d.  High-density connector alternatives were added for both shielded and 
  92.        non- shielded connectors.
  93.    e.  Improved termination for single-ended buses (Alternative 2)
  94.    f.  Asynchronous event notification
  95.    g.  Extended contingent allegiance
  96.    h.  Terminate I/O Process messaging for time- critical process termination
  97.  
  98. 4.  New command sets were added to SCSI-2 including:
  99.  
  100.    a.  CD-ROM (replaces read-only devices)
  101.    b.  Scanner devices
  102.    c.  Optical memory devices (provides for write-once, read-only, and
  103.        erasable media)
  104.    d.  Medium changer devices
  105.    e.  Communications devices
  106.  
  107.  
  108. 5.  All command sets were enhanced:
  109.  
  110.    a.  Device Models were added
  111.    b.  Extended sense was expanded to add:
  112.        + Additional sense codes
  113.        + Additional sense code qualifiers
  114.        + Field replaceable unit code
  115.        + Sense key specific bytes
  116.  
  117.    c.  INQUIRY DATA was expanded to add:
  118.        + An implemented options byte
  119.        + Vendor identification field
  120.        + Product identification field
  121.        + Product revision level field
  122.        + Vital product data (more extensive product reporting)
  123.  
  124.    d.  The MODE SELECT and MODE SENSE commands were paged for all device types
  125.    e.  The following commands were added for all device types:
  126.  
  127.        + CHANGE DEFINITION
  128.        + LOG SELECT
  129.        + LOG SENSE
  130.        + READ BUFFER
  131.        + WRITE BUFFER
  132.  
  133.    f.  The COPY command definition was expanded to include information on how
  134.        to handle inexact block sizes and to include an image copy option.
  135.    g.  The direct-access device command set was enhanced as follows:
  136.  
  137.        + The FORMAT UNIT command provides more control over defect management
  138.        + Cache management was added:
  139.           - LOCK/UNLOCK CACHE command
  140.           - PREFETCH command
  141.           - SYNCHRONIZE CACHE command
  142.           - Force unit access bit
  143.           - Disable page out bit
  144.  
  145.        + Several new commands were added:
  146.           - READ DEFECT DATA
  147.           - READ LONG
  148.           - WRITE LONG
  149.           - WRITE SAME
  150.  
  151.        + The sequential-access device command set was enhanced as follows:
  152.  
  153.           - Partitioned media concept was added:
  154.             * LOCATE command
  155.             * READ POSITION command
  156.  
  157.           - Several mode pages were added
  158.           - Buffered mode 2 was added
  159.           - An immediate bit was added to the WRITE FILEMARKS command
  160.  
  161.        + The printer device command set was enhanced as follows:
  162.           - Several mode pages defined:
  163.             * Disconnect/reconnect
  164.             * Parallel printer
  165.             * Serial printer
  166.             * Printer options
  167.  
  168.        + The write-once (optical) device command set was enhanced by:
  169.           - Several new commands were added:
  170.             * MEDIUM SCAN
  171.             * READ UPDATED BLOCK
  172.             * UPDATE BLOCK
  173.  
  174.           - Twelve-byte command descriptor blocks were defined for several
  175.             commands to accommodate larger transfer lengths.
  176.  
  177. =============================================================================
  178.  
  179. The following article was written by Dal Allan of ENDL in April 1990.  It 
  180. was published nine months later in the January 1991 issue of "Computer 
  181. Technology Review".  While it appeared in the Tape Storage Technology 
  182. Section of CTR, the article is general in nature and tape-specific.  In 
  183. spite of the less than timely publication, most of the information is still 
  184. valid.
  185.  
  186. It is reprinted here with the permission of the author.  If you copy this 
  187. article, please include this notice giving "Computer Technology Review" 
  188. credit for first publication.
  189.  
  190. ------------------------------------------------------------------------------
  191.                             What's New in SCSI-2
  192.  
  193. Scuzzy is the pronunciation and SCSI (Small Computer System Interface) is 
  194. the acronym, for the best known and most widely used ANSI (American National 
  195. Standards Institute) interface. 
  196.  
  197. Despite use of the term "Small" in its name, everyone has to agree that 
  198. Scuzzy is large - in use, in market impact, in influence, and unfortunately, 
  199. in documentation. The standards effort that began with a 20-page 
  200. specification in 1980 has grown to a 600 page extravaganza of technical 
  201. information. 
  202.  
  203. Even before ANSI (American National Standards Institute) published the first 
  204. run of SCSI as standards document in 1986, ASC (Accredited Standards 
  205. Committee) X3T9.2 was hard at work on SCSI-2. 
  206.  
  207. No technical rationale can be offered as to why SCSI-1 ended and SCSI-2 
  208. began, or as to why SCSI-2 ended and SCSI-3 began. The justification is much 
  209. more simple - you have to stop sometime and get a standard printed. Popular 
  210. interfaces never stop evolving, adapting, and expanding to meet more uses 
  211. than originally envisaged. 
  212.  
  213. Interfaces even live far beyond their technological lifespan. SMD (Storage 
  214. Module Drive) has been called technically obsolete for 5 years but every 
  215. year there are more megabytes shipped on the SMD interface than the year 
  216. before. This will probably continue for another year or so before the high 
  217. point is reached, and it will at least a decade before SMD is considered to 
  218. be insignificant. 
  219.  
  220. If SCSI enhancements are cut off at an arbitrary point, what initiates the 
  221. decision? Impatience is as good an answer as any. The committee and the 
  222. market get sick of promises that the revision process will "end soon," and 
  223. assert pressure to "do it now."
  224.  
  225. The SCSI-3 effort is actively under way right now, and the workload of the 
  226. committee seems to be no less than it was a year ago. What is pleasant, is 
  227. that the political pressures have eased. 
  228.  
  229. There is a major difference between the standards for SCSI in 1986 and SCSI-
  230. 2 in 1990. The stated goal of compatibility between manufacturers had not 
  231. been achieved in SCSI in 1986 due to a proliferation of undocumented 
  232. "features." 
  233.  
  234. Each implementation was different enough that new software drivers had to be 
  235. written for each device. OEMs defined variations in hardware that required 
  236. custom development programs and unique microcode. Out of this diversity 
  237. arose a cry for commonality that turned into CCS (Common Command Set), and 
  238. became so popular that it took on an identity of its own. 
  239.  
  240. CCS defined the data structures of Mode Select and Mode Sense commands, 
  241. defect management on the Format command and error recovery procedures. CCS 
  242. succeeded because the goals were limited, the objectives clear and the time 
  243. was right. 
  244.  
  245. CCS was the beginning of SCSI-2, but it was only for disks. Tape and optical 
  246. disks suffered from diversity, and so it was that the first working group 
  247. efforts on SCSI-2 were focused on tapes and optical disks. However, opening 
  248. up a new standards effort is like lifting the lid on Pandora's Box - it's 
  249. hard to stay focused on a single task. SCSI-2 went far beyond extending and 
  250. consolidating CCS for multiple device types. 
  251.  
  252. SCSI-2 represents three years of creative thought by some of the best minds 
  253. in the business. Many of the new features will be useful only in advanced 
  254. systems; a few will find their way into the average user's system. Some may 
  255. never appear in any useful form and will atrophy, as did some original SCSI 
  256. features like Extended Identify.
  257.  
  258. Before beginning coverage of "what's new in SCSI-2," it might be well to 
  259. list some of the things that aren't new. The silicon chips designed for SCSI 
  260. are still usable. No new features were introduced which obsolete chips. The 
  261. cause of silicon obsolescence has been rapid market shifts in integrating 
  262. functions to provide higher performance. 
  263.  
  264. Similarly, initiators which were designed properly, according to SCSI in 
  265. 1986, will successfully support SCSI-2 peripherals. However, it should be 
  266. pointed out that not all the initiators sold over the last few years behaved 
  267. according to the standard, and they can be "blown away "by SCSI-2 targets. 
  268.  
  269. The 1986 standard allows either initiators or targets to begin negotiation 
  270. for synchronous transfers, and requires that both initiators and targets 
  271. properly handle the sequence. A surprisingly large percentage of SCSI 
  272. initiators will fail if the target begins negotiation. This has not been as 
  273. much of a problem to date as it will become in the future, and you know as 
  274. well as I do, that these non-compliant initiators are going to blame the 
  275. SCSI-2 targets for being "incompatible." 
  276.  
  277. Quirks in the 1986 standard, like 4 bytes being transferred on Request 
  278. Sense, even if the requested length was zero have been corrected in SCSI-2. 
  279. Initiators which relied on this quirk instead of requesting 4 bytes will get 
  280. into trouble with a SCSI-2 target. 
  281.  
  282. A sincere effort has been made to ensure that a 1986-compliant initiator 
  283. does not fail or have problems with a SCSI-2 target. If problems occur, look 
  284. for a non-compliant initiator before you blame the SCSI-2 standard. 
  285.  
  286. After that little lecture, let us turn to the features you will find in 
  287. SCSI-2 which include: 
  288.  
  289.  o Wide SCSI: SCSI may now transfer data at bus widths of 16 and 32 bits. 
  290. Commands, status, messages and arbitration are still 8 bits, and the B-Cable 
  291. has 68 pins for data bits. Cabling was a confusing issue in the closing days 
  292. of SCSI-2, because the first project of SCSI-3 was the definition of a 16-
  293. bit wide P-Cable which supported 16-bit arbitration as well as 16-bit data 
  294. transfers. Although SCSI-2 does not contain a definition of the P-Cable, it 
  295. is quite possible that within the year, the P-Cable will be most popular 
  296. non-SCSI-2 feature on SCSI-2 products. The market responds to what it wants, 
  297. not the the arbitrary cutoffs of standards committees.
  298.  
  299.  o Fast SCSI: A 10 MHz transfer rate for SCSI came out of a joint effort 
  300. with the IPI (Intelligent Peripheral Interface) committee in ASC X3T9.3. 
  301. Fast SCSI achieves 10 Megabytes/second on the A-Cable and with wider data 
  302. paths of 16- and 32-bits can rise to 20 Megabytes/second and even 40 
  303. Megabytes/second. However, by the time the market starts demanding 40 
  304. Megabytes/second it is likely that the effort to serialize the physical 
  305. interface for SCSI-3 will attract high-performance SCSI users to the Fiber 
  306. Channel. 
  307.  
  308. A word of caution. At this time the fast parameters cannot be met by the 
  309. Single Ended electrical class, and is only suitable for Differential. One of 
  310. the goals in SCSI-3 is to identify the improvements needed to achieve 10 MHz 
  311. operation with Single Ended components.
  312.  
  313.  o Termination: The Single Ended electrical class depends on very tight 
  314. termination tolerances, but the passive 132 ohm termination defined in 1986 
  315. is mismatched with the cable impedance (typically below 100 ohms). Although 
  316. not a problem at low speeds when only a few devices are connected, 
  317. reflections can cause errors when transfer rates increase and/or more 
  318. devices are added. In SCSI-2, an active terminator has been defined which 
  319. lowers termination to 110 ohms and is a major boost to system integrity.
  320.  
  321.  o Bus Arbitration, Parity and the Identify Message were options of SCSI, 
  322. but are required in SCSI-2. All but the earliest and most primitive SCSI 
  323. implementations had these features anyway, so SCSI-2 only legitimizes the de 
  324. facto market choices. The Identify message has been enhanced to allow the 
  325. target to execute processes, so that commands can be issued to the target 
  326. and not just the LUNs. 
  327.  
  328.  o Connectors: The tab and receptacle microconnectors chosen for SCSI-2 are 
  329. available from several sources. A smaller connector was seen as essential 
  330. for the shrinking form factor of disk drives and other peripherals. This 
  331. selection was one of the most argued over and contentious decisions made 
  332. during SCSI-2 development. 
  333.  
  334.  o Rotational Position Locking: A rose by any other name, this feature 
  335. defines synchronized spindles, so than an initiator can manage disk targets 
  336. which have their spindles locked in a known relative position to each other. 
  337. Synchronized disks do not all have to be at Index, they can be set to an 
  338. offset in time relative to the master drive. By arraying banks of 
  339. synchronized disks, faster transfer rates can be achieved. 
  340.  
  341.  o Contingent Allegiance: This existed in SCSI-1, even though it was not 
  342. defined, and is required to prevent the corruption of error sense data. 
  343. Targets in the Contingent Allegiance state reject all commands from other 
  344. initiators until the error status is cleared by the initiator that received 
  345. the Check Condition when the error occurred. 
  346.  
  347. Deferred errors were a problem in the original SCSI but were not described. 
  348. A deferred error occurs in buffered systems when the target advises Good 
  349. Status when it accepts written data into a buffer. Some time later, if 
  350. anything goes wrong when the buffer contents are being written to the media, 
  351. you have a deferred error. 
  352.  
  353.  o Extended Contingent Allegiance (ECA): This extends the utility of the 
  354. Contingent Allegiance state for an indefinite period during which the 
  355. initiator that received the error can perform advanced recovery algorithms. 
  356.  
  357.  o Asynchronous Event Notification (AEN): This function compensates for a 
  358. deficiency in the original SCSI which did not permit a target to advise the 
  359. initiator of asynchronous events such as a cartridge being loaded into a 
  360. tape drive. 
  361.  
  362.  o Mandatory Messages: The list of mandated messages has grown: 
  363.  
  364.   +----------------------+--------------------------+-------------------+
  365.   |       Both           |       Target             |     Initiator     |
  366.   +----------------------+--------------------------+-------------------|
  367.   | Identify             | Abort                    | Disconnect        |
  368.   |                      |                          |                   |
  369.   | Message Reject       | No Operation             | Restore Pointer   |
  370.   |                      |                          |                   |
  371.   | Message Parity Error | Bus Device Reset         | Save Data Pointer |
  372.   |                      |                          |                   |
  373.   |                      | Initiator Detected Error |                   |
  374.   +----------------------+--------------------------+-------------------+
  375.  
  376.  o Optional messages have been added to negotiate wide transfers and Tags to 
  377. support command queueing. A last-minute inclusion in SCSI-2 was the ability 
  378. to Terminate I/O and receive the residue information in Check Condition 
  379. status (so that only the incomplete part of the command need be re-started 
  380. by the initiator).
  381.  
  382.  o Command Queueing: In SCSI-1, initiators were limited to one command per 
  383. LUN e.g. a disk drive. Now up to 256 commands can be outstanding to one LUN. 
  384. The target is allowed to re-sequence the order of command execution to 
  385. optimize seek motions. Queued commands require Tag messages which follow the 
  386. Identify. 
  387.  
  388.  o Disk Cacheing: Two control bits are used in the CDB (Command Descriptor 
  389. Block) to control whether the cache is accessed on a Read or Write command, 
  390. and some commands have been added to control pre-fetching and locking of 
  391. data into the cache. Users do not have to change their software to take 
  392. advantage of cacheing, however, as the Mode Select/Mode Sense Cache page 
  393. allows parameters to be set which optimize the algorithms used in the target 
  394. to maximize cache performance. Here is another area in which improvements 
  395. have already been proposed in SCSI-3, and will turn up in SCSI-2 products 
  396. shipping later this year. 
  397.  
  398.  o Sense Keys and Sense Codes have been formalized and extended. A subscript 
  399. byte to the Sense Code has been added to provide specifics on the type of 
  400. error being reported. Although of little value to error recovery, the 
  401. additional information about error causes is useful to the engineer who has 
  402. to analyze failures in the field, and can be used by host systems as input 
  403. to prognostic analysis to anticipate fault conditions. 
  404.  
  405.  o Commands: Many old commands have been reworked and several new commands 
  406. have been added. 
  407.  
  408.  o Pages: Some method had to be found to pass parameters between host and 
  409. target, and the technique used is known as pages. The concept was introduced 
  410. in CCS and has been expanded mightily in SCSI-2. 
  411.  
  412. A number of new Common Commands have been added, and the opcode space for 
  413. 10-byte CDBs has been doubled. 
  414.  
  415.  o Change Definition allows a SCSI-2 initiator to instruct a SCSI-2 target 
  416. to stop executing according to the 1986 standard, and provide advanced SCSI-
  417. 2 features. Most SCSI-2 targets will power on and operate according to the 
  418. 1986 standard (so that there is no risk of "disturbing" the installed 
  419. initiators, and will only begin operating in SCSI-2 mode, offering access to 
  420. the advanced SCSI-2 capabilities, after being instructed to do so by the 
  421. initiator using the Change Definition command.
  422.  
  423.  o The Mode Select and Mode Sense pages which describe parameters for 
  424. operation have been greatly expanded, from practically nothing in 1986 to 
  425. hundreds of items in SCSI-2. Whenever you hear of something being described 
  426. as powerful and flexible tool, think complicated. Integrators are advised to 
  427. be judicious in their selection of the pages they decide to support. 
  428.  
  429.  o the Inquiry command now provides all sorts of interesting data about the 
  430. target and its LUNs. Some of this is fixed by the standard, but the main 
  431. benefit may be in the Vendor Unique data segregated into the special 
  432. designation of Vital Product Data, which can be used by integrators as a 
  433. tool to manage the system environment.
  434.  
  435.  o Select Log and Sense Log have been added so that the initiator can gather 
  436. both historical (e.g. all Check Conditions) and statistical (e.g. number of 
  437. soft errors requiring ECC) data from the target. 
  438.  
  439.  o Diagnostic capabilities have been extended on the Read/Write Buffer and 
  440. Read/Write Long commands. The ways in which the target can manage bad blocks 
  441. in the user data space have been defined further and regulated to reduce 
  442. inconsistencies in the 1986 standard. A companion capability to Read Defect 
  443. Data permits the initiator to use a standard method to be advised of drive 
  444. defect lists. 
  445.  
  446.  o A new group of 12-byte command blocks has been defined for all optical 
  447. devices to support the large volume sizes and potentially large transfer 
  448. lengths. The Erase command has been added for rewritable optical disks so 
  449. that areas on the media can be pre-erased for subsequent recording. Write 
  450. Once disks need Media Scan, so that the user can find blank areas on the 
  451. media. 
  452.  
  453.  o New command sets have been added for Scanners, Medium Changers, and CD 
  454. ROMs. 
  455.  
  456. All of this technical detail can get boring, so how about some "goodies" in 
  457. SCSI-2 which benefit the common man and help the struggling engineer? First, 
  458. and probably the best feature in SCSI-2 is that the document has been 
  459. alphabetized. No longer do you have to embark on a hunt for the Read command 
  460. because you cannot remember the opcode. 
  461.  
  462. In the 1986 standard, everything was in numeric sequence, and the only 
  463. engineers who could find things easily were the microprogrammers who had 
  464. memorized all the message and opcode tables. Now, ordinary people can find 
  465. the Read command because it is in alphabetic sequence. This reorganization 
  466. may sound like a small matter but it wasn't, it required a considerable 
  467. amount of effort on the part of the SCSI-2 editors. It was well worth it. 
  468.  
  469. Another boon is the introduction for each device class of models which 
  470. describe the device class characteristics. The tape model was the most 
  471. needed, because various tape devices use the same acronym but with different 
  472. meanings or different acronyms for the same meaning. 
  473.  
  474. The SCSI-2 tape model defines the terms used by SCSI-2, and how they 
  475. correspond to the acronyms of the different tapes. For example, on a 9-track 
  476. reel, End of Tape is a warning, and there is sufficient media beyond the 
  477. reflective spot to record more data and a trailer. Not so on a 1/4" tape 
  478. cartridge, End of Tape means out of media and no more data can be written. 
  479. This sort of difference in terms causes nightmares for standardization 
  480. efforts. 
  481.  
  482. So there it is, a summary of what is in SCSI-2. It's not scary, although it 
  483. is daunting to imagine plowing through a 600-page document. Time for a 
  484. commercial here. The "SCSI Bench Reference" available from ENDL Publications 
  485. (408-867-6642), is a compaction of the standard. It takes the 10% of SCSI-2 
  486. which is constantly referenced by any implementor, and puts it in an easy-
  487. to-use reference format in a small handbook. The author is Jeff Stai, one of 
  488. the earliest engineers to become involved with SCSI implementation, and a 
  489. significant contributor to the development of both the 1986 standard and 
  490. SCSI-2. 
  491.  
  492. SCSI-2 is not yet published as a standard, but it will be available later 
  493. this year. Until then, the latest revision can be purchased from Global 
  494. Engineering (800-854-7179).
  495.  
  496. Biography
  497.  
  498. Consultant and analyst I. Dal Allan is the founder of ENDL and publisher of 
  499. the ENDL Letter and the "SCSI Bench Reference." A pioneer and activist in 
  500. the development and use of standard interfaces, he is Vice Chairman of ASC 
  501. X3T9.2 (SCSI) and Chairman of the SCSI-2 Common Access Method Committee. 
  502.  
  503.  
  504.  
  505.  
  506.  
  507. ====
  508. QUESTION: Is SYNCHRONOUS faster than ASYNCHRONOUS?
  509. QUESTION: Is the 53C90 Faster than spec?
  510. From: kstewart@ncr-mpd.FtCollins.NCR.COM (Ken Stewart)
  511. ====
  512.  
  513. I've seen a few comments about our 54C90 being faster than spec.  While
  514. I doubt the author was really complaining (I got twice as much as I paid 
  515. for--sure makes me mad ;)  I'd like to explain the situation.
  516.  
  517. Along the way, I'll also show that asynchronous is faster on short cables, 
  518. while synchronous is faster on long cables.  The cross-over point occurs 
  519. somewhere around six feet--assuming that you have our 53C90 family devices 
  520. at both ends of the cable.  The reason has to do with the propagation delay 
  521. of the cable; the turn around time of the silicon; and the interlocked nature
  522. of the asynchronous handshake.
  523.  
  524. 1)  We have measured propagation delays from various cables and found an 
  525.     average of 1.7 nanoseconds per foot, which is roughly 5.25 ns per meter.
  526.     
  527. 2)  The turn-around time is the amount of time the SCSI chip takes to
  528.     change an output in response to an input.  If REQ is an input then ACK 
  529.     is an output.  Or if ACK is an input then REQ is an output.  Typical
  530.     turn-around time for the 53C90 is 40 nanoseconds.  
  531.  
  532. 3)  The asynchronous transfer uses an interlocked handshake where a device 
  533.     cannot do the next thing until it receives positive acknowledgment that 
  534.     the other device received the last thing.  
  535.  
  536.     First REQ goes true                        /* driven by Target */ 
  537.     then ACK is permitted to go true           /* driven by Initiator */
  538.     then REQ is permitted to go false  
  539.     then ACK is permitted to go false  
  540.  
  541. Thus we have four "edges" propagating down the cable plus 4 turn-around
  542. delays.  Asynchronous transfer requires 55 ns setup and no hold time 
  543. (paragraph in 5.1.5.1 in SCSI-1 or SCSI-2) which gives an upper speed 
  544. limit around 18 MB/s.  A detailed analysis (assuming 53C90 family) shows that
  545. the setup time subtracts out.  This is mostly because we are running at 
  546. one-third the max rate, but also because setup for the next byte can begin 
  547. anytime after ACK is received true or REQ is received false, depending on who
  548. is receiving.  You can either take my word for it or draw the waveforms 
  549. yourself.  Thus, the asynchronous transfer reduces to:
  550.  
  551. (4 * 1.7 * 1) + (4 * 40ns) = 167 ns                /* 1 foot cable */
  552.                            = 6 MB/s
  553.  
  554. (4 * 5.25 * 6) + (4 * 40ns) = 286 ns               /* 6 meter cable */
  555.                             = 3.5 MB/s
  556.  
  557. (4 * 5.25 * 25) + (4 * 40ns) = 685 ns              /* 25 meter cable */
  558.                              = 1.5 MB/s            
  559.  
  560. note: cables longer than 6 meters require external differential transceivers 
  561. which add delay and degrade the performance even more than indicated here.
  562.  
  563. Our simulations say that under very best conditions (fast silicon, low 
  564. temperature, high voltage, zero length cable) we can expect more than 8 MB/s 
  565. asynchronously.  In the lab, I routinely measure 5 MB/s on 8 foot cables.  
  566. So, if you were writing the data manual for this, how would YOU spec it?
  567.  
  568.  
  569. The framers of the SCSI spec threw in synchronous mode to boost the 
  570. performance on long cables.  In synchronous mode, the sending device is 
  571. permitted to send the next byte without receiving acknowledgment that the 
  572. receiver actually received the last byte.  Kind of a ship and pray method.  
  573. The acknowledgment is required to come back sometime, but we just don't have 
  574. to wait for it (handwave the offset stuff and the ending boundary 
  575. conditions).  In this mode any external transceivers add a time shift, but 
  576. not a delay.  So if you negotiate for 5 MB/s, you get 5MB/s regardless how 
  577. long the cable is and regardless whether you are single-ended or 
  578. differential.  But you can't go faster than 5.5 MB/s, except in SCSI-2.  
  579. Synchronous mode does have a hold time (unlike asynch) but again, setup and
  580. hold times subtract out.  In SCSI-1 synchronous mode, the speed limit comes 
  581. from the combined ASSERTION PERIOD + NEGATION PERIOD which is 
  582. 90ns + 90ns = 180ns = 5.5 MB/s.  Our 53C90 family doesn't quite hit the max,
  583. but we do guarentee 5.0 MB/s.  In SCSI-2, anything above 5.0 MB/s is 
  584. considered to be FAST.  Here the maximum transfer rate is explicitly limited 
  585. to 100 ns or 10MB/s; you don't have to read between the lines to deduce it.
  586.  
  587. Interesting tid-bit: given a SCSI-2 FAST period of 100 ns and a cable delay
  588. of 131 ns on a 25 meter cable, you can actually stack 1.31 bytes in the 8-bit
  589. cable.  In FAST and WIDE SCSI you can stack 5.24 bytes in this copper FIFO.  
  590. Hummm...
  591.  
  592.  
  593.  
  594. ====
  595. QUESTION: What are the jumpers on my Conner drive?
  596. ANSWER From: ekrieger@quasar.hacktic.nl (Eric Krieger)
  597. Embellishment from: Henrik Stahl (f92-hst@nada.kth.se)
  598. ====
  599.  
  600.                QUICK INSTALLATION GUIDE
  601.  
  602.                          SCSI
  603.  
  604.      Most SCSI host adapters are compatible with Conner drives.
  605. Software drivers and installation instructions are provided with
  606. the host adapter.
  607.  
  608.      The drives are shipped with SCSI ID set to 7. To select a
  609. different ID refer to the following:
  610.  
  611. Table A                       Table B
  612. ID   E-1  E-2  E-3            ID   E2   E3   E4
  613. 0    out  out  out            0    out  out  out
  614. 1    in   out  out            1    in   out  out
  615. 2    out  in   out            2    out  in   out
  616. 3    in   in   out            3    in   in   out
  617. 4    out  out  in             4    out  out  in
  618. 5    in   out  in             5    in   out  in
  619. 6    out  in   in             6    out  in   in
  620. 7    in   in   in             7    in   in   in
  621.  
  622. Parity is always ENABLED on the CP3200,CP30060,CP30080,CP30100,
  623. CP 30200, CP 3500, CP 3360, CP 30540 and CP 31370.
  624.  
  625. For the CP 340, jumper E-1 to disable parity.
  626.  
  627. All other models, jumper E-4 to disable parity.
  628.  
  629.      SCSI drive parameters:
  630.  
  631.      Model          Hds       Cyl       Sec       Table     LED
  632.      CP2020         2         642       32        A         n/a
  633.      CP340          4         788       26        B         1
  634.      CP3020         2         622       33        A         1
  635.      CP3040         2        1026       40        A         1
  636.      CP3180         6         832       33        A         1
  637.      CP3100         8         776       33        A         1
  638.      CP30060        2        1524       39        A         2
  639.      CP30080        4        1053       39        A         2
  640.      CP30100        4        1522       39        A         2
  641.      CP30200        4        2119       49        A         2
  642.      CP3200         8        1366       38        A         2
  643.      CP3360         8        1806       49        A         2
  644.      CP3540         12       1806       49        A         2
  645.      CP 30080E      2        1806      46         AA       C/E
  646.      CP 30170E      4        1806      46         AA       C/E
  647.      CP 30540       6        2249      59-89      AA        B
  648.      CP 31370       14       2094      59-95      AA        B
  649.  
  650. LED 1               LED 2
  651. J-4  Pin 1 = +      J-1 Pin 3 = +
  652.      Pin 2 = -          Pin 4 = -
  653.  
  654. On the CP 31370, jumper E5 enables termination. Default is termination on.
  655. It may be the same jumper for other models.
  656.  
  657.  
  658.  
  659. ====
  660. QUESTION: What are the jumpers for my Wangtek 5150 drive?
  661. ANSWER From: "Terry Kennedy, Operations Mgr" <uunet!spcvxa.spc.edu!TERRY>
  662. ====
  663.  
  664.   First, the disclaimer: This is not an official representation of Wangtek
  665. or of my employer. This is info I've discovered by reading publicly avail-
  666. able reference material. When changing jumpers, always observe proper anti-
  667. static precautions and be sure you have the current configuration written
  668. down so you have a known starting point.
  669.  
  670.   Ok. Here's the complete scoop on Wangtek 5150ES drives:
  671.  
  672.   The current part number for a "generic" 5150ES is:
  673.  
  674.   33685-201 (black faceplate)
  675.   33685-202 (beige faceplate)
  676.  
  677.   These are referred to as the "ACA version" of the drive.
  678.  
  679.   There are _many_ other part numbers for 5150ES drives. If you have one that
  680. isn't one of the above, it doesn't mean you have an old or an out of rev drive,
  681. it just means it's a special version created for a distributor or OEM, or with
  682. different default jumper settings.
  683.  
  684.   You can order the Wangtek 5150ES OEM Manual from Wangtek. It is part number
  685. 63045-001 Revision D.
  686.     
  687.   There are 5 possible logic boards. Here are the jumper options for each:
  688.  
  689.   Logic assembly #33678
  690.   ---------------------
  691.  
  692.   (J10)
  693.   0 - SCSI unit LSB
  694.   1 - SCSI unit
  695.   2 - SCSI unit MSB
  696.   K - not documented
  697.  
  698.   J32 - Diagnostic test connector, default is not installed
  699.   E1, F1 - SCSI termination power. E1 in = power from drive and to cable,
  700.        E1 out - power from cable. F1 = terminator power fuse, 1.5A FB.
  701.        Default is IN.
  702.   E2 - Chassis ground. E2 in jumpers logic to chassis ground. E2 out isolates
  703.        through a .33 uFD capacitor. Default is IN.
  704.   E5 - Master oscillator enable. Test only. Must be IN.
  705.   E20 - Factory test. Must be OUT.
  706.   RP1, RP2, RP3 - SIP terminators. Default is IN, remove for no termination.
  707.  
  708.   Logic assembly #30559
  709.   ---------------------
  710.  
  711.   HDR1 - Factory testing. Setting depends on drive. Don't touch.
  712.   HDR2 - Factory testing. Defaults are pins 15-16, 17-18, 19-20. Don't touch.
  713.   HDR3 pin 1 - A-B enables buffered mode. B-C disables. Can be overridden by
  714.                SCSI Mode Select.
  715.   HDR3 pin 2, 3 - Default data format. Set to B-C for a 5150ES.
  716.   HDR3 pin 4 - parity enable. A-B enables, B-C disables.
  717.  
  718.   (J10)
  719.   0 - SCSI unit LSB
  720.   1 - SCSI unit
  721.   2 - SCSI unit MSB
  722.   K - not documented
  723.  
  724.   E1 - SCSI termination power. E1 in = power from drive and to cable,
  725.        E1 out - power from cable.
  726.   E2 - Chassis ground. E2 in jumpers logic to chassis ground. E2 out isolates
  727.        through a .33 uFD capacitor. Default is IN.
  728.   E3 - Master oscillator enable. Test only. Must be IN.
  729.   E4 - Write test mode. Test only. Must be OUT.
  730.   E5 - Write oscillator enable. Test only. Must be IN.
  731.   E6 - Disable HDR2. Test only. Must be IN.
  732.   E7 - Microcontroller clock select. In for a 5150ES.
  733.   E8 - Write precomp select. Set on a per-drive basis. Don't touch.
  734.   E9 - RAM size. Don't touch.
  735.   E10 - Erase frequency. Don't touch.
  736.   RP2, RP3 - DIP and SIP terminators. Default is IN, remove for no termination.
  737.  
  738.   Logic assembly #30600
  739.   ---------------------
  740.  
  741.   HDR1 - Factory testing. Setting depends on drive. Don't touch.
  742.   HDR2 - Write precomp select. Set on a per-drive basis. Don't touch.
  743.   HDR3 pin 1, 2, 3 - SCSI device address. 1 is LSB, 3 is MSB. A-B=1, B-C=0
  744.   HDR3 pin 4 - Parity enable. IA-B is enabled.
  745.   HDR3 pin 5, 6 - Default data format. B-C for a 5150ES.
  746.   HDR3 pin 7 - Buffered mode select. A-B is enabled.
  747.   HDR3 pin 8 - Reserved. Must be OUT.
  748.   HDR4 - Write frequency select. Don't touch.
  749.   E1 - SCSI termination power. E1 in = power from drive and to cable,
  750.        E1 out - power from cable.
  751.   E2 - Chassis ground. E2 in jumpers logic to chassis ground. E2 out isolates
  752.        through a .33 uFD capacitor. Default is IN.
  753.   E3 - Hard/soft reset. IN enables hard reset.
  754.   E4 - Write precomp select. Don't touch.
  755.   E5 - Clock speed. Don't touch.
  756.   E6 - Tape hole test. Don't touch.
  757.  
  758.   Logic assembly #30552
  759.   ---------------------
  760.  
  761.   HDR1 - Factory testing. Setting depends on drive. Don't touch.
  762.   HDR2 - Write precomp select. Set on a per-drive basis. Don't touch.
  763.   HDR3 pin 1, 2, 3 - SCSI device address. 1 is LSB, 3 is MSB. [Note - HDR3
  764.              pins 1-3 are duplicated at another location on the board]
  765.   HDR3 pin 4 - Parity enable. IN is enabled.
  766.   HDR3 pin 5, 6, 7, 8 - Default data format. 5,5 B-C, 7-8 A-B for a 5150ES.
  767.   HDR4 - Write frequency select. Don't touch.
  768.   E1 - SCSI termination power. E1 in = power from drive and to cable,
  769.        E1 out - power from cable.
  770.   E2 - Chassis ground. E2 in jumpers logic to chassis ground. E2 out isolates
  771.        through a .33 uFD capacitor. Default is IN.
  772.   E3 - Hard/soft reset. IN enables hard reset.
  773.   E4 - Write precomp select. Don't touch.
  774.   E5 - Clock speed. Don't touch.
  775.   E6 - Tape hole test. Don't touch.
  776.  
  777.   Logic assembly #30427
  778.   ---------------------
  779.  
  780.   HDR1 - Factory testing. Setting depends on drive. Don't touch.
  781.   HDR2 - Write precomp select. Set on a per-drive basis. Don't touch.
  782.   HDR3 pin 1, 2, 3 - SCSI device address. 1 is LSB, 3 is MSB. A-B=1, B-C=0
  783.   HDR3 pin 4 - Parity enable. IA-B is enabled.
  784.   HDR3 pin 5, 6, 7, 8 - Default data format. 5,5 B-C, 7-8 A-B for a 5150ES.
  785.   E1, E3 - Factory test. Must be IN.
  786.   E2 - SCSI termination power. E2 in = power from drive and to cable,
  787.        E2 out - power from cable.
  788.   E4 - Chassis ground. E4 in jumpers logic to chassis ground. E4 out isolates
  789.        through a .33 uFD capacitor. Default is IN.
  790.  
  791.   Firmware - There are many flavors of firmware. I have seen the following
  792. parts:
  793.  
  794.   24115-xxx
  795.   24144-xxx
  796.   21158-xxx
  797.  
  798.   the -xxx suffix changes as the firmware is updated. According to the folks
  799. I spoke to at Wangtek, the standard firmware is the 21158. The latest version
  800. as of this writing is 21158-007. All of these will work with the Adaptec and
  801. GTAK.
  802.  
  803.   The firmware options (as returned by a SCSI Identify) are on the end of the
  804. product string, which is "WANGTEK 5150ES SCSI ES41C560 AFD QFA STD" for the
  805. 21158-007 firmware. The 3-letter codes have the following meaning:
  806.  
  807.   AFD - Automatic Format Detection - the drive will recognize the format (such
  808.     as QIC-24, QIC-120, or QIC-150) that the tape was written in.
  809.  
  810.   QFA - Quick File Access - the ability to rapidly locate a tape block, and
  811.     to implement the "position to block" and "report block" SCSI commands.
  812.     This is compatible with the Tandberg implementation.
  813.  
  814.   STD - Standard feature set.
  815.  
  816.  
  817.  
  818. ====
  819. QUESTION: What is CAM?
  820. ANSWER From: ctjones@bnr.ca (Clifton Jones)
  821. ====
  822.  
  823. Common Access Method.
  824.  
  825. It is a proposed ANSI standard to make it easier to program SCSI applications
  826. by encapsulating the SCSI functions into a standardized calling convention.
  827.  
  828. ANSWER From: landis@sugs.tware.com (Hale Landis)
  829. ====
  830.  
  831. You may be able to get the CAM spec(s) from the SCSI BBS
  832.  
  833.  
  834.  
  835.  
  836. ====
  837. QUESTION: What is FPT (Termination)?
  838. ANSWER From: jvincent@bnr.ca (John Vincent)
  839. ====
  840.  
  841.  
  842. FPT is actually really simple, I wish I had thought of it. What it does 
  843. is use diode clamps to eliminate over and undershoot. The "trick" is
  844. that instead of clamping to +5 and GND they clamp to the output of two 
  845. regulated voltages. This allows the clamping diodes to turn on earlier
  846. and is therefore better at eliminating overshoot and undershoot. The block
  847. diagram for a FPTed signal is below. The resistor value is probably in the 
  848. 120 to 130 ohm range. The actual output voltages of the regulators may not
  849. be exaclty as I have shown them but ideally they are matched to the diode 
  850. characteristics so that conduction occurs when the signal voltage is 
  851. greater than 3.0 V or less than 0.5 V. 
  852.  
  853.  
  854.  
  855.           +--------------- TERMPWR 
  856.           |
  857.       ____|____
  858.      |        |
  859.      | Vreg 1 |-------*-------------------------*--------------- 3.? V
  860.      |________|       |                         |
  861.                       |                         |
  862.                       |                         |
  863.                       |                         \
  864.          +------------*                         /    pullup resistor
  865.          |            |                         \
  866.          |            |                         /
  867.          |        ____|___                      |
  868.          |       |        |                     |
  869.          |       | Vreg 2 |----------*----------|--------------- 3.0 V
  870.          |       |________|          |          |
  871.          |                         --+--        |
  872.          |                          / \         |
  873.          +-----------+             /___\        |
  874.                      |               |          |
  875.                      |               |          |              terminated
  876.                      |               *----------*------------- signal
  877.                      |               |
  878.                      |               |
  879.                      |             --+-- 
  880.                      |              / \
  881.                      |             /___\
  882.                      |               |
  883.                   ___|____           |
  884.                  |        |          |                 
  885.                  | Vreg 3 |----------*-------------------------  1.0 V (?)
  886.                  |________|
  887.  
  888.  
  889.  
  890.  
  891.  
  892. ====
  893. QUESTION: What is Active Termination?
  894. ANSWER From: eric@telebit.com (Eric Smith)
  895.         and  brent@auspex.com (Brent R. Largent)
  896. ====
  897.  
  898.  
  899. An active terminator actually has one or more voltage regulators to produce
  900. the termination voltage, rather than using resistor voltage dividers.
  901.  
  902. This is a passive terminator:
  903.  
  904.  
  905. TERMPWR     ------/\/\/\/------+------/\/\/\/-----  GND
  906.                                |
  907.                                |
  908.                               SCSI signal
  909.  
  910. Notice that the termination voltage is varies with the voltage on the
  911. TERMPWR line.  One voltage divider (two resistors) is used for each SCSI
  912. signal.
  913.  
  914.  
  915. An active terminator looks more like this (supply filter caps omitted):
  916.  
  917.                +-----------+
  918. TERMPWR   -----| in    out |------+------/\/\/\/-------SCSI signal
  919.                |   gnd     |      |
  920.                +-----------+      |
  921.                     |             +------/\/\/\/-------SCSI signal
  922.                     |             |
  923. GND  ---------------+             |
  924.                                   +------/\/\/\/-------SCSI signal
  925.                                   |
  926.                                  etc.
  927.  
  928. Assuming that the TERMPWR voltage doesn't drop below the desired termination
  929. voltage (plus the regulator's minimum drop), the SCSI signals will always
  930. be terminated to the correct voltage level.
  931.  
  932. Several vendors have started making SCSI active terminator chips,
  933. which contain the regulator and the resistors including Dallas
  934. Semiconductor, Unitrode Integrated Circuits and Motorola
  935.  
  936.  
  937.  
  938.  
  939. ====
  940. QUESTION: Why Is Active Termination Better?
  941. ANSWER brent@auspex.com (Brent R. Largent)
  942. ====
  943.  
  944.  
  945. Typical pasive terminators (resistors) fluctuate directly in relation to the 
  946. TERM Power Voltage. Usually terminating resistors will suffice over short distances,
  947. like 2-3 feet, but for longer distances active termination is a real advantage. It
  948. reduces noise.
  949.  
  950.  Active Termination provide numerous advantages:
  951. - A logic bit can disconnect the termination
  952. - Provides Negative Clamping on all signal lines
  953. - Regulated termination voltage
  954. - SCSI-2 spec recommends active termination on both ends of the scsi cable.
  955. - Improved Resistance tolerences (from 1% to about 3%)
  956.  
  957.  
  958.  
  959.  
  960. ====
  961. QUESTION: Why is SCSI more expensive than IDE?
  962. ANSWER From: landis@sugs.tware.com (Hale Landis)
  963. ====
  964.  
  965. In a typical single drive PC system, ATA (you call it IDE, the
  966. proper name is ATA) is faster than any SCSI.  This is because of
  967. the 1 to 2 millisecond command overhead of a SCSI host adapter
  968. vs. the 100 to 300 microsecond command overhead of an ATA drive.
  969. Also, ATA transfers data 16-bits at a time from the drive
  970. directly to/from the system bus.  Compare this to SCSI which
  971. transfers data 8-bits at a time between the host adapter and the
  972. drive.  The host adapter may be able to transfer data 16-bits at
  973. a time to the system bus.
  974.  
  975. Of course you could go to Fast SCSI or Wide SCSI but that costs
  976. a whole bunch more!
  977.  
  978. But then you asked about cost.
  979.  
  980. The real reason SCSI costs more has to do with production volume.
  981. There are about 120,000 drives made per day on this planet. 85%
  982. of those drives are ATA.  The remainder are SCSI, IPI, SMD and a
  983. few other strange interfaces.  The actual percent that are SCSI
  984. is falling at a very very slow rate.  Without the production
  985. volume, componet prices are higher, therefor drive prices are
  986. higher.
  987.  
  988. And then you must add in the host adapter cost.  Compare $15 for
  989. ATA vs.  $50 for a simple SCSI host adapter.  But you probably
  990. want a higher quality SCSI host adapter so plan on spending $100
  991. to $500 for one.
  992.  
  993. You figure out how to get people to buy more SCSI drives, say
  994. 50,000 per day, and maybe the prices will come down to ATA price
  995. levels.  Plus you could probably get a very good marketing job at
  996. any of the disk drive companies!  Of course, each day more and
  997. more people are discovering the performance advantage of ATA so
  998. your job may not be as easy as you would like.
  999.  
  1000.  
  1001. ====
  1002. QUESTION: What is Plug and Play SCSI?
  1003. ANSWER: leefi@microsoft.com (Lee Fisher) (Updated Dec 7 1993)
  1004. ====
  1005.  
  1006. Plug and Play is the name of a technology that lets PC hardware and
  1007. attached devices work together automatically. A user can simply attach a
  1008. new device ("plug it in") and begin working ("begin playing"). This should
  1009. be possible even while the computer is running, without restarting it.
  1010. Plug and Play technology is implemented in hardware, in operating systems
  1011. such as Microsoft Windows, and in supporting software such as drivers and
  1012. BIOS.
  1013.  
  1014. With Plug and Play technology, users can easily add new capabilities to
  1015. their PCs, such as sound or fax, without having to concern themselves with
  1016. technical details or encountering problems. For users of mobile PCs (who
  1017. are frequently changing their configurations with docking stations,
  1018. intermittent network connections, etc.) Plug and Play technology will
  1019. easily manage their changing hardware configuration.  For all users, Plug
  1020. and Play will reduce the time wasted on technical problems and increase
  1021. their productivity and satisfaction with PCs.
  1022.  
  1023. The Plug and Play technology is defined in a series of specifications
  1024. covering the major component pieces. There are specifications for BIOS,
  1025. ISA cards, PCI, SCSI, IDE CD-ROM, PCMCIA, drivers, and Microchannel. In a
  1026. nutshell, each hardware device must be able to be uniquely identified, it
  1027. must state the services it provides and the resources which it requires,
  1028. it must identify the driver which supports it, and finally it must allow
  1029. software to configure it.
  1030.  
  1031. The first Plug and Play compliant products are available now, as are
  1032. development kits for drivers and hardware. Twenty different Plug and Play
  1033. products were shown at Comdex in November 1993.
  1034.  
  1035. Specifications:
  1036.  
  1037. The Plug and Play specifications are now available via anonymous ftp at 
  1038. ftp.microsoft.com in the \drg\plug-and-play subdirectory. The files are 
  1039. compressed in .zip format, and are in Microsoft Word format.)
  1040.  
  1041.   Plug and Play ISA files (.\pnpisa\*)
  1042.  
  1043.     errata.zip   Clarifications and corrections to pnpisa.doc
  1044.     isolat.zip   MS-DOS testing tool to isloate ISA PnP hardware
  1045.     pnpdos.zip   Plug and Play device driver interface specification
  1046.     pnpisa.zip   Hardware spec for PnP ISA enhancement
  1047.     vhdlzi.zip   Hardware spec for PnP ISA enhancement
  1048.  
  1049.   Plug and Play SCSI files (.\scsi_ide\*):
  1050.  
  1051.     pnpscsi.zip  Plug and Play SCSI specification proposal
  1052.     scam.zip     SCAM (SCSI Comnfigured Auto-Magically) specification
  1053.  
  1054.   Plug and Play BIOS files (.\bios\*):
  1055.  
  1056.     apmv11.zip   Advanced Power management spec v.1
  1057.     vios.zip     Plug and Play BIOS spec
  1058.     escd1.zip    Spec for optional method of storing config info for PnP BIOS
  1059.  
  1060. PlayList@Microsoft.COM alias:
  1061.  
  1062. There is an alias, PlayList@Microsoft.COM, which you can email and get on
  1063. a Microsoft mailing list related to Plug and Play, where the Hardware
  1064. Vendor Relations Group (HVRG) will mail out new specifications,
  1065. announcements, information on workshops, Windows Hardwware Engineering
  1066. Conference (WinHEC), etc...
  1067.  
  1068. Compuserve PlugPlay forum:
  1069.  
  1070. There is a forum on Compuserve, GO PLUGPLAY. This forum is the method for
  1071. support, discussions and dialogs about Plug and Play. In addition, the
  1072. forum's library contains all of the current specification.
  1073.  
  1074. Intel Plug and Play kits:
  1075.  
  1076. If you are interested in Intel's two Plug and Play kits, either "Plug and
  1077. Play Kit for MS-DOS and Windows" or "Plug and Play BIOS Enhancements Kit",
  1078. FAX your name and company information to Intel at 1.503.696.1307, and
  1079. Intel will send you the information.
  1080.  
  1081.  
  1082. ====
  1083. QUESTION: Where can I get drivers (ASPI and other) for the WD7000 FASST2
  1084.       host adapter?
  1085. ANSWER From: Gary Field (garyf@wiis.wang.com)
  1086. ====
  1087.  
  1088.     Western Digital stopped producing WD7000 FASST2 cards some time in
  1089. 1990. Future Domain bought the rights to produce them and as of early 1994
  1090. they still do. Columbia Data Products Inc. of Altamonte Springs, Florida still
  1091. provides driver support for the card.
  1092. Their SST IV driver package provides support for many types of SCSI devices
  1093. including disks, tapes, and CDROM. Also included in this package is an ASPI
  1094. manager driver (equivalent to the Adaptec ASPI4DOS.SYS). I have personally
  1095. tested this ASPI manager and it works with GNU tar w/ASPI and the Corel CDROM
  1096. driver, so most other ASPI stuff should work too. Versions of SSTASPI.SYS
  1097. prior to Oct 1993 do NOT work with the above mentioned programs so be sure
  1098. to check the file date. There are other useful programs in the package as well.
  1099. For instance I find the TAPEUTIL program very handy for duplicating tapes.
  1100. The price of this package is $99 or $85 as an upgrade of a previous version.
  1101. A pre-requisite to run this software is that the adapter card must have a
  1102. BIOS ROM version of 3.36 or newer. I don't think cards manufactured before
  1103. 1989 or so are compatible.
  1104.  
  1105. Columbia Data Products Inc.
  1106. 1070 B Rainer Dr
  1107. Altamonte Springs, FL 32714 (407) 869-6700
  1108.  
  1109.  
  1110. ====
  1111. End.
  1112. ====
  1113.  
  1114.  
  1115.  
  1116. --
  1117. --/*   Gary A. Field - WA1GRC, Wang Labs M/S 019-72B, 1 Industrial Ave      
  1118.    Lowell, MA 01851-5161,  (508) 967-2514, email: garyf@wiis.wang.com, EST5EDT
  1119.                    A waist is a terrible thing to mind!             */
  1120.